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ABSTRACT

In this report two approaches are presented to predict the structure and PVT behavior of

associating fluids with emphasis on water.  One approach is the development of equations of

state based on the analytic chain association theory (ACAT).  An associating fluid is assumed to

be a mixture of monomer, dimer, trimer, etc., for which the composition distribution are

obtained.  The resulting equations are simple enough to be used for PVT calculations.

The second approach is the development of an analytical expression for the first shell of the

radial distribution function (RDF).  This expression satisfies the general functionality of the

RDF with respect to intermolecular potential, temperature and density as well as all the limiting

values of RDF at high temperature and dilute gas, and infinite separation.  This model has

initially been applied to simple potential energy functions, such as the Lennard-Jones and Kihara

functions.  The results have been reported to be in good agreement with the available computer

simulation data of RDF for these fluid models and the experimental data for argon.

Finally, an effective Kihara pair potential is derived for water which incorporates the

hydrogen bonding using the ACAT.  The potential parameters of this model are determined to

predict the first shell of the RDF data for water at various subcritical temperatures and densities.

The predicted results for water at near critical and supercritical conditions are shown to be in

agreement with the data obtained by neutron diffraction experiments and with the simulation

data.
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1. INTRODUCTION

The key feature of water molecules is the hydrogen bonding which refers to the formation

of chemical aggregates or polymers.  Nemethy and Scherga [1], indicated through their studies

on water structure that hydrogen bonding plays an important role in forming aggregates that can

reach sizes of up to one hundred H2O molecules at room temperature.  We have represented the

association of water molecules due to hydrogen bonding with the following chain reaction [2].

Ki (T)

(H2O)i + (H2O)1 ⇐⇒ (H2O) i+1 i=1,2,...,∞  (1)

The equilibrium constant of the above reaction can be expressed as

Ki  = [xi+1/(xi x1)] [γi+1 /( γi γ1)] = [x i+1 /(xi x1)] Γi i=1,2,...,∞ (2)

where xi and γi are the mole fraction and activity coefficient of (H2O)i, respectively, and Γi is the

ratio of activity coefficients.  For simplicity, we assume that all Ki 's and all Γi's are the same,

(i.e. K=K1=K2 =...= Ki =... and Γ=Γ1 =Γ2=...=Γi =...).  Let us define κ as the ratio of K / Γ,

κ £ K / Γ = xi+1/(xi x1) i=1,2,...,∞ (3)

We may extend Eq. (3) to different species as follows:

x2 = κ x1
2

x3 = κ x2 x1 = κ2 x1
3

: (4)
xi+1 = κ xi x1 = κi x1

i+1

:
Since the summation of all mole fractions is unity, then

i = 0

∞

∑ κi x1
i+1 = 1 (5)

Considering κ x1<1, we may show that the series on the left side of Eq. (5) converge to

x1 /(1- κ x1) =1 (6)



Then the following relation will result for the composition of the monomer:

x1 =1/(1- κ) (7)

Having a large number of associated components, compositions may be replaced with a

composition distribution function χ(I) where I is the number of associated monomers.  In this

case, the summation in Eq. (5) can be replaced with an integral.

0

∞

∫ χ(I) dI = 1 (8)

where χ(I) is defined as follows:

χ(I) = χ0 κ
I x1

I+1 (9)

χ0 is the normalizing factor and can be calculated by using Eq. (8).

χ0 = - (ln κ x1)/ x1 (10)

If we substitute χ0  and x1 into Eq. (9), we get the following result.

χ(I) =  - [κ /(1+ κ)]I  ln [κ /(1+ κ)] (11)

In what follows, we present a method for the development of equations of state of

associating fluids applying the above composition distribution which is related to equilibrium

mixtures of associated species.  Moreover, this composition distribution will be used in

obtaining the molecular potential function parameters.  Having the potential energy function, we

may be able to obtain the RDF applying a general analytical expression for the first shell of the

RDF which was initially proposed by the authors [3] for simple potential energy functions, such

as the Lennard-Jones and Kihara functions.

 2. APPLICATION OF COMPOSITION DISTRIBUTION TO EQUATIONS OF STATE

The authors have used the composition distribution already developed in order to extend the

equations of state parameters to associating fluids [2].  As an example this extension is first



performed on the van der Waals equation of state (VDW EOS).  Since an associating fluid is a

multicomponent mixture of different polymers, equation of state parameters “a” and “b” can be

expressed by the following mixing rules.

a = 
j

∞

∑
i

∞

∑ xixj aij = 
j

∞

∑
i

∞

∑ xixj (aiaj)
1/2= (

i

∞

∑ xi ai
1/2)2 (12)

b = 
j

∞

∑
i

∞

∑ xixj bij = 
j

∞

∑
i

∞

∑ xixj (bi+bj) /2 = 
i

∞

∑ xi bi (13)

The above equations can be  replaced with the following expressions

a = (
0

∞

∫ χ(I) [a(I)]1/2 dI )2 (14)

b = 
0

∞

∫ χ(I) b(I) dI (15)

For simplicity, the parameter a(I) is considered to be a linear function of distribution index

"I" in the following form, and since "b" is proportional to molecular volume, b1/3 will be linearly

proportional to molecular length of associating species, thus

a(I)1/2 = a0
1/2 + a1

1/2 I (16)

b(I)1/3 = b1
1/3 I (17)

where “b1” is the equation of state parameter for the monomer.

Substituting Eqs. (11), (16) and (17) into Eqs. (14) and (15), respectively, and integrating,

and then writing the resulting equations with respect to the critical properties, we get:

a = ac F(ξ) (18)

b = bc ξ
3 (19)

where

F(ξ) = [(C1+ ξ)/(C1+1)]2 (20)

C1 £ - (a0 / a1)
1/2 ln [κc /(1+κc )] (21)



ξ = ln κc / ln κ = (ln Kc- ln Γc )/(ln K- ln Γ) (22)

The association constant appearing in the above equation is expressed as

ln K = (T ∆S°- ∆H°)/(RT) (23)

where the reference change of enthalpy ∆H° and entropy ∆S° of association are independent of

temperature.  The activity coefficient ratio, Γ, is a function of temperature, pressure and mole

fraction.  For simplicity, we may assume Γ to be also independent of pressure and mole

fraction, and have the following simple expression.

ln Γ = α / (RT) (24)

where " α " is a constant.  Using Eqs. (23) and (24), the parameter "ξ" in Eq. (22) can be

rewritten as

ξ = Tr (1+ ξ0 )/(Tr+ ξ0 ) (25)

where ξ0 is defined as

ξ0 ≡ - (∆H°+ α )/( ∆S° Tc) (26)

Since " ξ" depends only on temperature, parameters “a” and “b” will also be temperature

dependent only.  Therefore, the VDW EOS for associating fluids can be written as

P = RT/(V-bc ξ
3) -ac F(ξ) /V2 (27)

The term V appearing in this equation is the true molar volume, and it is based on true number

of moles.  To calculate molar volume from Eq. (27) we need to have pressure and temperature

of the system like any equation of state.

Since at the critical point, the conditions (∂P/∂V)T,cr = (∂2P/∂V2)T,cr = 0  have to be satisfied,

then for the VDW EOS, we will have:



ac =(27 R2 Tc
2 )/(64Pc ) (28)

bc = RTc /(8Pc ) (29)

which are the same as the original VDW EOS.

The theory proposed here can be extended to other equations of state by a similar method as

it is reported above for the VDW EOS.  For example, considering the Redlich-Kwong equation

of state (RK EOS), it can be shown that it takes the following form for associating fluids:

P = RT/(V-bc ξ
3) - ac F(ξ) /[T0.5 V(V+bc ξ

3)] (30)

where "ac" and "bc" in this equation are the same as in the original RK EOS.

In the calculations reported below, both the van der Waals and Redlich-Kwong equations

of state were used for water.  Five different experimental isotherms with reduced temperatures

of 0.5, 0.7, 1.0, 1.5 and 2.0 [4] were chosen for specific volume calculations of water which

cover both vapor and liquid phases equally.  Also 35 saturation data points (from triple point to

critical point) were used for vapor pressure calculations.  Table 1 shows the absolute average

deviations (AAD%) of vapor pressure and specific volume calculations of water based on the

original VDW EOS and RK EOS and based on the improved equations applying the values of

associating parameters C1 and ξ0.  According to this table, C1= ±∞ which implies that only the

parameter ξ0 needs to be considered for water in the associating VDW and RK EOS's.

Another case of interest may be the case where the unlike interaction parameter “aij” is

represented by aij = (aiaj)
1/2 (1-kij) where kij is the coupling parameter of associating species.

This case has been studied in detail in Ref. [2].  Calculations have also been reported for various

associating fluids based on these two cases.  It has been demonstrated that incorporating the

proposed theory with equations of state will improve the properties calculations in all cases.

In the following section, another application of the ACAT and the corresponding

composition distribution will be studied in order to obtain molecular potential function

parameters for associating fluids.



3. APPLICATION OF COMPOSITION DISTRIBUTION TO POTENTIAL PARAMETERS

The composition distribution previously developed, may also be incorporated in the

potential energy function.  For simplicity, we assume that the associating species form an ideal

solution, i.e. Γ=1 and according to Eq. (3), κ =K.  Therefore, Eq. (11) has the following form.

χ(I) = -[K /(1+K)] I ln [K /(1+K)] (31)

The association constant appearing in the above equation may be determined from Eq. (23).

The most reliable values for ∆H° and ∆S° are those obtained using spectroscopic methods, such

as Raman spectroscopy as reported by Walrafen et al. [5]:

∆H°= -22 kJ/mole,  ∆S°= -52 J/mole K

Applying the conformal solution theory, which assumes that there exists a pure hypothetical

fluid with the same properties as those of the mixture at the same density and temperature, the

pair potential φij can be represented as follows [6]:

φij = εij φoo  (r /σij) (32)

where subscript (oo) denotes the reference fluid, r is the intermolecular distance and the

parameters σij and εij  represent the molecular diameter and energy parameter, respectively.

Among the statistical mechanical conformal solution theories of mixtures, one-fluid van der

Waals theory is simple to use and accurate enough with the following form:

σ3 = 
j

∑
i

∑ xixj σij
3 (33)

ε σ3 = 
j

∑
i

∑ xixj εij σij
3 (34)

δ3 = 
j

∑
i

∑ xixj δij
3 (35)



Applying the combining rules σij
3 = (σi

3+ σ j
3) /2, δij

3 = (δi
3+δj

3) /2  and εij = (εiεj)
1/2 for

unlike-interaction potential parameters, we get the following expressions:

σ3 = 
j

∑
i

∑ xixj [(σi
3+ σj

3)/ 2] =
i

∑ xi σi
3 (36)

δ3 = 
j

∑
i

∑ xixj [(δi
3+ δj

3)/ 2] =
i

∑ xiδi
3 (37)

ε σ3 = 
j

∑
i

∑ xixj (εi εj)
1/2 [(σi

3+ σj
3)/ 2] = 

i
∑  (xiεi

1/2 σi
3) 

j
∑ xj εj

1/2 (38)

Considering the number of associating species to be very large, we can replace the above

summations with integrals and the compositions with the composition distribution function.

σ3 = 
0

∞

∫ χ(I) [σ(I)] 3 dI (39)

δ3 = 
0

∞

∫ χ(I) [δ(I)] 3 dI (40)

ε σ3 = 
0

∞

∫ χ(I) [ε(I)]1/2 [σ(I)] 3 dI 
0

∞

∫ χ(I) [ε(I)]1/2 dI (41)

We relate parameters [σ(I)] 3, [δ(I)] 3 and [ε(I)]1/2 to be functions of distribution index "I".

[σ(I)] 3 = σ1
3 Iξ1 (42)

[δ(I)] 3 = δ1
3 Iξ 2 (43)

[ε(I)]1/2 = ε1
1/2 Iξ3  [1+ ξ3 (1 /I -1)+ ξ4 (1-I)] (44)

where σ1, δ1 and ε1 are the potential energy function parameters for the monomer and ξ1, ξ2, ξ3

and ξ4 are constants.

Substituting Eqs. (31) and (39)-(41) into Eqs. (42)-(44), respectively, and integrating, we

will have



σ = σ1 [Γ (1+ ξ1) θ
ξ1 ]1/3 (45)

δ = δ1 [Γ (1+ ξ2) θ
ξ2 ]1/3 (46)

ε = ε1 θ
2ξ 3  [Γ (1+ ξ1+ ξ3) Γ (1+ ξ3)/ Γ (1+ξ1)] {1+ ξ3/[(ξ1+ ξ3) θ]- ξ3+ ξ4 [1-(2+ξ1+ ξ3) θ]}.

                                                                         {1+1/θ- ξ3+ ξ4 [1-(2+ ξ3) θ]} (47)

where Γ  is the gamma function and θ £-1/ln [K /(1+K)].

At this point, we are going to use these potential parameters in an analytical expression for

the first shell of the RDF proposed by the authors [3] for simple potential energy functions.

4. AN ANALYTIC EXPRESSION FOR THE FIRST SHELL

The radial distribution function of water is the most informative feature of its molecular

structure.  In general, two limiting conditions that the radial distribution function has to satisfy

are the case of dilute gases in which the density approaches zero and the case of hard spheres

where the temperature approaches infinity.  The RDF of dilute gases can be derived from the

statistical thermodynamics as

gdg(y)=exp [-β φ(y)] (48)

where gdg(y) is the dilute gas RDF, y£r/σ, β£1/(k T) and k  is the Boltzmann's constant.  The

authors [3] proposed the following functional form for the first shell of radial distribution

function which satisfies these two limiting cases.

g(y)= m1 ghs(1) exp [-m2 β φ(x)]+ (1-m1) exp [-m2 β φ(y) -c1 (y-d*)] for 0 ≤ y ≤ d* (49)

g(y)=m1 ghs(x)+ (1-m1) exp [-m2 β φ(y) -c2 (y-d*)] for d*≤ y < ym (50)

where x£r/d, d*£d/σ, d is the location of maximum of RDF which in the case of hard sphere

RDF corresponds to the hard core diameter, ym is the minimum of the RDF after the first peak,



ghs(x) is the hard sphere RDF for which the Wertheim’s analytical solution [7] of Percus-Yevick

equation for the first shell of hard sphere radial distribution function has been utilized.  Both

Eqs. (49) and (50) converge to the the following simple equation at the maximum of the first

peak of the RDF (at y=d*).

g(d*)=m1 ghs(1)+(1-m1) exp [-m2 β φ(d*)] (51)

The parameters c1 and c2 appearing in Eqs. (49) and (50) must be determined from the fact that

the g(y) has to be maximum at distance d*, i.e.  [∂g(y)/∂y]y=d*  = 0.

c1= -m1m2 β φ’(1) ghs(1) / {d*(1-m1) exp [-m2 β φ(d*)]} -m2 β φ’(d*) (52)

c2= m1 g’hs(1) /{d*(1-m1) exp [-m2 β φ(d*)]} -m2 β φ’(d*) (53)

The parameters m1, m2 and d* in the RDF equation are expressed as functions of the

dimensionless  temperature T*£k T/ε, and dimensionless density ρ*£ ρσ3 such that they satisfy

the limiting conditions of RDF.

m1= exp [-4.93/( ρ* T*)] (54)

m2= exp [0.68  ρ* (1-1/ T*)] (55)

d*=Rm exp (-0.0483 ρ*2 T*0.5 ) (56)

where Rm is the location of dilute gas RDF peak which can be calculated by solving the equation:

[∂φ(y)/∂y]
y = R m

 = φ’(y =Rm) = 0 (57)

According to Eq. (54), as the temperature approaches infinity, m1 will approach unity.

Therefore, we conclude that Eq. (50) approaches the limiting case of hard sphere RDF, ghs for

y≥d* (or x≥1).  For the case where the density is very low, according to Eqs. (52)-(56),

m1=c1=c2=0 and m2=1.  Hence Eqs. (49) and (50) reduce to Eq. (48), the dilute gas RDF.



The present model was tested versus the first shell RDF data for the Lennard-Jones and

Kihara fluids and versus the experimental results for the argon.  A good agreement was reported

to be between the calculated RDF and the simulated and experimental data [3].

In the following section, the above expressions for the first shell of RDF are joined with the

Kihara potential energy function whose parameters, in the case of water, has been found by

using the ACAT and the conformal solution theory.

5. APPLICATION TO KIHARA POTENTIAL FUNCTION

The Kihara potential in which each molecule is assumed to have an impenetrable hard core

of diameter δ accounts for the intermolecular forces of water provided that its parameters include

the hydrogen bonding effects.  In order to apply the preceding first-shell RDF model to Kihara

potential, we derive the following expressions for φ(y), φ(x), φ(d*), φ’(d*), φ’(1), and Rm .

φ(y)= 4ε {[(1-δ*)/(y- δ*)]12  - [(1- δ*)/(y- δ*)]6} (58)

φ(x)= 4ε {[(1- δ*/d*)/(x- δ*/d*)]12 - [(1- δ*/d*)/(x- δ*/d*)]6} (59)

φ(d*)= 4ε {[(1- δ*)/(d*- δ*)]12 - [(1- δ*)/(d*- δ*)]6} (60)

φ’(d*)= [-24ε/(d*- δ*)] {2 [(1- δ*)/(d*- δ*)]12 - [(1- δ*)/(d*- δ*)]6} (61)

φ’(1)= -24ε/(1- δ*/d*) (62)

Rm= δ*+21/6 (1- δ*) (63)

where δ*= δ/σ.  Fig. 1 shows the variations of calculated values of Kihara parameters using the

proposed model for the first shell of RDF and the experimental data reported by Narten and

Levy [8].  It can be inferred from this figure that σ does not practically change with temperature



which implies that ξ1 in Eq. (45) is almost zero.  The values of δ1 and ξ2 are found to be 0.35 Å

and 1.0.  Consequently, Eqs. (45)-(47) reduce to

σ ≈ σ1 = 2.68 Å (64)

δ = 0.35 θ1/3 (65)

ε = ε1 {θ ξ3  Γ (1+ ξ3) {1+1/θ - ξ3+ ξ4 [1-(2+ ξ3) θ]} }2 (66)

where ε1/k =130 K, ξ3= 0.4 and ξ4= 0.0036.  Fig. 2 represents the calculated first shell of the

RDF of water at various temperatures using the effective Kihara potential function for

associating fluids.  The curves have been compared with the experimental data for RDF at the

same conditions determined by Narten and Levy [8].

In order to verify the validity of the proposed model for near critical and supercritical

conditions, we have calculated the first shell of RDF for the conditions T=300˚C, ρ=0.72 g/cm3

and T=400˚C, ρ =0.66 g/cm3 for which the experimental data were reported by Postorino et al.

[9] and the molecular simulation data based on ST2 model were reported by Chialvo and

Cummings [10].  According to Fig. 3, there is a good general agreement between the proposed

theory and the experimental and simulated data as far as the location and height of the peak are

concerned.  However, the bump on the left hand side of the first peak in the experimental data

could not be reproduced with the proposed model.  Chialvo and Cummings [10] believed that

this bump was a false feature of the RDF of water introduced by the diffraction data analysis.

Their molecular simulation model also failed to predict this bump.

One of the important features of the experimental RDF data of water was reported to be the

fact that as the temperature is raised from ambient temperature to about 170˚C, the first peak

diminishes a little in height, while by further increasing the temperature to supercritical region,

there is a rise in the first peak again [9].  This peculiarity of water which can be considered in all

experimental and simulated data [8-10] is also predicted by the proposed model.



Fig. 4 represents the variations of the first peak of RDF of water at reduced temperatures

(Tr=T/Tc=T*/Tc
* ) of 0.5, 1.0 and 1.5 and reduced densities (ρr=ρ/ρc=ρ*/ρc

* ) of 0.5, 1.0 and

2.0, respectively.  In order to compare the results obtained for water with the RDF of Lennard-

Jones fluids, the corresponding RDF curves for Lennard-Jones fluids at the similar conditions

have been plotted on the same figure.  We have chosen the critical temperature and density of

Lennard-Jones fluids [11,12] Tc
* =1.31 and ρc

* =0.31.  The first peaks of Lennard-Jones fluids

RDF are higher at subcritical and lower at supercritical conditions than those of water.

In order to investigate the sufficiency of the information for the first shell of RDF, the

concept of the radius of influence has been utilized which was proposed by Mansoori and Ely

[13] for the theory of local compositions.  This concept is applied to calculate the distance at

which the RDF could be truncated for determining the isothermal compressibility.  In all cases

studied, it is shown that the radius of truncation is located inside the first shell of RDF.  

The  isothermal compressibility, κT, can be calculated by applying the equation:

κT
*= 1/(ρ* T*)+ (4π/T*)

0

∞

∫ [g(y) -1] y2 dy (67)

where κT
*£ κT ε/ σ3.  The integral in Eq. (67) can be written in the following form.

0

∞

∫ [g(y) -1] y2 dy = 
0

R κ

∫ [g(y) -1] y2 dy+ 
Rκ

∞

∫ [g(y) -1] y2 dy (68)

The radius of truncation of RDF, Rκ, is chosen such that the second integral disappears, i.e.

Rκ

∞

∫ [g(y) -1] y2 dy= 0 (69)

In general, Eq. (69) has several roots for Rκ.  However, we impose the constraint that Rκ

has to be within the first shell of RDF.  Therefore

κT
*= 1/(ρ* T*)+ (4π/T*)

0

R κ

∫ [g(y) -1] y2 dy (70)



Fig. 5 represents schematically the value of Rκ which gives rise to the equality of dashed

areas above and below the horizontal axis to the right of Rκ.  Since g(y) is a function of

temperature and density, Rκ is also a function of temperature and density.  Fig. 8 illustrates the

variations of Rκ with the temperature for water at Psat, 0.5 and 1 kbar.  In order to obtain Rκ, we

have utilized the experimental isothermal compressibility data reported by Helgeson and

Kirkham [14].  According to Fig. 6, the radius of truncation of RDF is within the first shell for

all the conditions reported.

6. CONCLUSION

We have demonstrated that the analytic chain association theory can be incorporated into

equations of state.  When this theory is applied to cubic equations of state, with certain

assumptions the cubic nature of these equations can be retained.  The resulting equations are

simple enough to be used for PVT calculations.  Numerical calculations for density and vapor

pressure have been performed over wide ranges of temperature and pressure for water as one

representative associating fluid.  It can be observed that the results are greatly improved when

applying the association theory and the error is in the order of magnitude of applying the

equation to non-associating systems.

We have also derived an effective Kihara pair potential for water which incorporates the

hydrogen bonding by using the ACAT and the conformal solution theory.  The potential

parameters have been obtained based on the first shell of RDF experimental data for water by

using an analytical expression for the first shell of RDF previously proposed by the authors

which satisfies the limiting cases of hard sphere radial distribution function at high temperatures

and the dilute gas radial distribution function at very low densities.  The calculated values of

RDF compare well with sub-critical experimental data and with simulation and experimental

near-critical and supercritical data.
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Table 1. Absolute average deviation of vapor pressure and specific volume of water.

EOS ξ0
C1 AAD% in Psat AAD% in V

VDW (original) 2851.0 28.2

VDW (proposed theory) 0.297 ±∞ 41.3 9.2

RK (original) 144.6 14.2

RK (proposed theory) 0.109 ±∞ 29.6 5.1



Figure captions:

Fig. 1. Variations of the Kihara parameters for water with temperature using the proposed 

model for the first shell of RDF

Fig. 2. Comparison of the proposed model for the first shell of the water RDF and the 

experimental data at various temperatures.

Fig. 3. Comparison of the predicted first shell of the water RDF with the experimental data 

and the molecular simulation results at near critical and supercritical conditions.

Fig.4. Variations of the first peak of the water RDF and a Lennard-Jones fluid at different 

conditions.

Fig. 5. Radius of truncation Rκ for the isothermal compressibility integral [g(y)-1] y2.

Fig. 6. Variations of the radius of truncation Rκ with temperature and density for water.
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